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4bstract. Pseudo-random numbers are usually generated by linear congruential methods. 
Starting with an integer yo, a sequence (y1 j is constructed by yi+1 _ ay; + r (mod m), m, a, 
r being integers. The derived fractions xi _ y,/mn are taken as samples from the uniform 
distribution on [0, 1). In this paper it is shown that the joint probability distribution of 
pairs xi, xi+, cani be calculated exactly. Explicit calculations slhow that this distribution is 
surprisingly near to the uniform distribution for most 'reasonable' generators. The best 
approximation to the uniform distribution on the unit-square is achieved if the continued 
frawtion for at and m (or at and mr/I) is long. 

1. Introduction. This paper deals with pseudo-random numbers generated by 
the well,known linear congruential method, originally due to D. H. Lehmer [20]: 
A sequence of integers is started with a value yo and continued by 

(1.1) y -cayi + r (mod in), 0 _<y, < in for all i. 

The fractions 

(1.1') xI = Y4/nlz 

are the derived pseudo-random numbers in the interval [0, 1). The 'modulus' m, the 
'factor' a, and the 'increment' r are given integers. 

The lipear congruential metlhod has considerable advantages: 
(1) For an appropriate choice of a, r, and in, the fractions x, = yi/in are uni- 

formly distributed in the interval [0, 1). 
(2) Subsequences of most generators pass differenit statistical tests, i.e. frequency 

tests, run tests, poker tests. 
(3) The method is fast and easy to program. 

The fact (1) is well known and will be referred to in Section 2. The facts (2) and (3) 
will not be considered in this paper. 

Relatively recently, some mathematicians have considered number-theoretic 
properties of the generator (1.1). Important for the randomness of the sequence x, 
is the serial correlation p, between x, and x,+., taken over the whole period. In a 
'good' random sequence, p, should be extremnely small for small s. Coveyou [2] and 
Greenberger [11] derived bounds for p,; Jansson [16], [17] showed that p. can be 
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calculated exactly for some important generators. That fact was rediscovered by the 
author (see Dieter [7]) without knowing Jansson's results. For an extremely fast 
method of computation of the serial correlation, see the paper Dieter/Ahrens [8]; 
that paper covers all subcases of the generator (1.1). Computations showed that 
the serial correlation p. is extremely small for most generators. Although this con- 
dition is necessary for the use of a generator (E.1), it is in no way sufficient. Even if 
a is equal to 1, the increment r can be determined in such a way th4t pi t 0, which 
shows that the serial correlation by itself is by no means a sufficient indicator of 
randomness. 

In most applications of pseudo-random numbers, one assumes that xi and xi+,+ 
are independent. Hence, it would be interesting to know the exact value of 

(1.2) AP = P(x< x < x + Ax, y 5 xi+, < y + Ay)-Ax4Av. 

The main purpose of this paper is to show that (1.2) can be calculated exactly for 
any choice of x, Ax, y, Ay, and to give numerical results for some often used 
generators. 

The main tool of this calculation is the theory of the so-called generalized 
Dedekind sums, which are defined as follows: 

(1.3) sf(a,c) = + ))ap + ag + ch 

where a, c, g, h, f are integers and 

(1.4) (()) x - [x] - if x # 0 (mod 1), 
o if x 0_ (mod 1) 

differs only for integers x from the first Bernoulli-polynomial P,(x) x - [x] -. 
The explicit expressions for (1.2) are alternating sums of generalized Dedekind sums. 
In particular, for the important generators y+, + ay, (mod 2e), a 9 5 (mod 8), 
the exact value of (1.2) is an alternating sum of four generalized Dedekind sums. 

The generalized Dedekind sums (1.3) may be calculated using the reciprocity 
formula derived in Dieter [6]. This reciprocity suggests a Euclidean algorithm for 
a and c: 

(1.5) a =qoc-an, cq- 1a1-a2, a, = q2a2-a3, * a an, -- qnan 

where ici > la1l > la,l > ... > la,J > lanl = I and the ai are minimal at each 
step. The quotients q, lead to a bound for the generalized Dedekind sum 

(1.6) D1(a, c) = h IqiI + 3'7 + 5 > s"s(a, c)l, 

which is independent of the subscripts g, h. Thus, D(a, c) yields a bound for the 
quantity (1.2). For example, if the generator is defined by y,+, ay, (mod 2), 
a 3 5 (mod 8), then 

(1.7) IAN.1 = 22 |API < 3 D(a, 2 ). 

AN is the deviation of the number N of pairs x,, x,+, in a given rectangle 
[x, x + Ax) X Ly, y + Ay) from their expected value 2e-2AxAy. Hence, (1.7) is small 
if D(a, 2e-C) is snmall. This means: 
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The factor a has to be chosen in such a way that the Euclidean algorithm for a and 
2 -2 has small quotients q,. 

Similar statements are true for general m p 2' and for generators with r 0 0. 
Extensive numerical computations of AN have been carried out with the help 

of J. Ahrens, Halifax, Canada and A. Grube, Karlsruhe, Germany. These calculations 
showed a surprising result: if the unit-square is divided into 2( X 2a subsquares, 
then AN is extremely small for most factors a. For example, if the generator is defined 
by yi+1 _ 515y, (mod 2") and the unit-square is divided into 210 X 210 equal sub- 
squares, AN is equal to one of the values 0, i 1, :1: 2, i3, i4, i 65, i6, 7, and 
-8. This means: each of the 210 X 210 subsquares should contain 23820 = 8,192 
pairs xi, x,+1. The actual numbers lie between 8,184 and 8,200. The bound (1. 7) is 
39.75 < 40. 

These theoretical and numerical considerations show: 
The factor a can be chosen in such a way that x, and its successor x,,1 are nearly 

independent. 
This property is particularly important for the generation of transformed random 

variables. A typical example is the construction of a standard normal variable z 
from two uniformly distributed independent random variables x and y according 
to thp formula z = (-21nx)"' cos iry. The convenient method of taking two suc- 
cessive pseudo-random numbers for x and y is legal only if successors and predecessors 
are statistically independent. Another example is numerical integration by Monte- 
Carlo methods. Here, it is always assumed that pairs of successive pseudo-random 
numbers are statistically independent. 

The generator y, + 51 6yi (mod 23") has the property that all quotients q, of 
the Euclidean algorithm for 516 and 2" are small. However, some often used 
generators have quotients qi which are quite large. These generators do not produce 
pseudo-random numbers which are as uniformly distributed in the unit square. 
For these generators it will be slhown that to each large qi there corresponds a set 
of sloping strips of subsquares of the unit square with equal values of AA. Although 
the values of AN are small for most 'reasonable' choices of the factor a, such pseudo- 
random number generators cannot be recommended: The set of sloping strips of 
subsquares with equal AN 5 0 causes a systematic deviation from the uniform 
distribution of pairs x,, x,+, in the unit square. 

The results of this paper also show that the mixed congruential generator (r # 0) 
has no advantage over the purely multiplicative congruential generator (r = 0). 
Any adjustment of r cannot improve the statistical independence of pairs of pseudo- 
random numbers. 

The paper is self-contained except for some number-theoretical results in Section 
2 (length of period) and Section 4 (reciprocity formula). The formulas for the exact 
distribution of pairs are derived in Section 3. They are discussed in Section 5. 
Section 6 contains numerical results. A comparison of different generators closes 
the paper. 

2. Length of Period and Generated Residues. The linear congruential method 
(1.1) generates nonnegative integers yi which are smaller than the modulus m. If 
Yn e ,y0 (mod in), the whole sequence {y,I is repeated. The smallest integer n such 
that yn _ y.o (mod in) is called the length of the period. For a good approximation 
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to the continuous uniform distribution, the period s,hould have maximum length 
for a given modulus m. Fortunately, the maximum periods of the linear congruential 
generators depend on relatively simple properties of a, r, and m. As the results are 
different in the two cases r 0 0 (mod m) and r- 0 (mod m), they will be quoted 
separately. 

Case a. r 0 0 (mod m)-Mixed Congruential Method. The result is stated as 
THEOREM 2.1. A complete period of the sequence (1.1) contains all residues mod m, 

if and only if 
(i) r and m are relatively prime; 
(ii) a 1 (mod p) for all prime factors p of m; 
(iii) a I (mod 4) if 4 is a factor of m. 
A proof of this theorem can be found in Hull/Dobell (14], Jansson (17], Knuth 

f19]. In the proof, the relationship 

a8yi + (as-' + a2 + + a+ l)r(mod m), 

(2.1) Y 
ayi 

+ a_ r (mod m) if a 0 1 (mod m), 

,asy, + sr (mod ni) if a l (mod m) 

is prominent. (2.1) is a direct consequence of the defining recursion (1.1) and will be 
used later on. In the rest of this paper, it is assumed that the conditions of Theorem 
2.1 are always fulfilled. 

Case b. r- 0 (mod mn)-Multiplicative Congruential Method. If the increment 
r is zero, the relation (2.1) can be simplified as 

(2.2) Y, ' t ,-- a"j/i (mod ni). 

For the statement of the final result wh-1ichi corresponds to Theorem 2.1, an arithmetic 
fuinction X(m) hias to be introduced. 

DEFINITION 2.2. 

(p - I)p1 if p 5$ 2, p prime, 

(2.3) XU)= if p = 2,e 3, 

if p = 2,e= e or 2, 

antd 

(2 .4) X(1 ( ve XJ) pe r) =- LC M( (P"') , * , (P ) 

(LCM Least conmmon multiple.) 
Secondly, the concept of a priinitive elemeneit mod m is needed. 

DEFINITION 2.3. a is called a primitive elemenit mod m if 
(i) a is a priinitive root mod p for all odd primne factors p of in; 
(ii) a`l 0 1 (mod p2) if p $ 4 is a factor of in; 
(iii) a ? 5 (mod 8) if 8 is a factor of in; 
(iv) a- I (mod 4) if mn is eveii an1d /2 4 0 (mod 8). 
With these definitions, the final result for the Case b can be stated as follows. 



PSEUDO-RANDOM NUMBIERS 859 

THiEOREM 2.4. The sequience (1.1) wit/h r 0 (mod in) has maximal period of 
length X(m) provided that 

(i) yo and m are relatively prime; 
(ii) a is a primitive element mod m. 
In the proof of Theorem 2.4, the recursion (2.2) is prominent. From now on, 

it will be assuimed that these conditions for yo and a are fulfilled. 
The Generated Residues. The mixed congruential method (r # 0) generates all 

residues mod m if the directions of Theorem 2.1 are taken. Therefore, the interval 
(0, 1) is covered by the xi in (1.1') such that all fractions jt/m occur. This is obviously 
the best approximation to the continuous uniform distribution within the accuracy 
l/m. 

In the case of the multiplicative congruential method (r = 0), the generated 
residues mod m are not always spread as evenly. Therefore, Theorem 2.4 has to be 
supplemented by a detailed study of the residues which are obtained within a full 
period. 

For this and for later purposes, an integer f is defined which depends solely on 
the modultls m: 

DEFINITION 2.5. 

(2.5) f is the smnallest of the divisors n of n for which X(n)/n = X(m)/m. 

If m/f is denoted by c one has 

(2.6) in -c and X(m) = cX(J). 

If m = 2' and e ? 3 then f = 8. It is easy to see that each prime factor p of m divides 
f. Since the directions in Theorem 2.4 for the choice of the factor a and the starting 
value yo are conditions mod p for odd plm and mod 8 if 81ni, they are, in fact, con- 
ditions mod f. Hence, the generated residue classes mod nm may be classified in terms 
of a set of residue classes r1, r2, * , rA() miod f. From here, the generated pseudo- 
random numbers may be represented as 

(2.7) - 
+ r, , + - - + r(f) where A = 0, 1 * , c - 1. c cf c ci c cf 

For applications of (2.7) to any given in, a, and yo, one starts with the determination 
of f. Then the generated residues r, (mod f) are calculated. Obviously, they depend 
only on the choice of the factor a and the starting value yo. Only half of the number 
of possible choiceh for yo have to be considered: if y0 is changed into -yo, the pseudo- 
random nunmbers xi = yijm are merely transformed into -x, = -yi/lm 
1 - (,/mn) (mod 1). Therefore, only those yo, for which 0 < yo < f/2, will be con- 
sidered in the following special cases. 

Case A. in 2e. These moduli are important since they are convenient on 
binary computers. One can, of course, assume that e ? 3. Depending on the choice 
of tlle factor a, two subeases arise: 

A.I. a 5 (mod 8), I, 1 (mod 4). All residues 

(2.8) 4, + I (,= 0,1 .. - 1) 

are genlerated. The derived pseuido-randonm numlbers x, Y,/2' are as uniformly 
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distributed as possible within the accuracy 1/2-2. Since a classification mod 4 is 
possible, f = 8 may be changed into f = 4 and therefore X(j) = 1, deviating from 
Definition 2.5. 

A.2. a _ 3 (mod 8), yo 1 or 3 (mod 8). All residues 

(2.9) 8,A+ l,8,u+ 3 (A= 0, 1, .- ,2"-3-1) 

are generated. f = 8 and X(j) = 2 remain in accordance with (2.5). The distribution 
is not quite as uniform as the last one. 

Case B. m = p', p ? 2. This case covers the odd prime numbers and their 
powers. p' = 2' i 1 and p = 10' i 1 are of practical interest. One has f = p, 
Xv) = p-1 and c = r/p = p-1. The residues 

(2.10) p,u+v (lA- 0,1, .' ,p 6-1 l,v = 1,2, ,p - 1) 

are generated provided that the directions in Theorem 2. 4 are taken. If m is a prime 
number p, all residues except 0 are generated. For e > 1, additional gaps occur at 
all points jAp. 

3. Joint Probability Distribution of Pairs. In this section, pseudo-random num- 
bers will be related to their successors: the joint probability distribution of the pairs 
xi, xi+1 will be determined. The main tool is the theory of the generalized Dedekind 
sums from which an accurate expression for 

(3.1) AP= P(x<xi<x- Ax,y xi+ <y+Ay)-AxAy 

will be calculated. The results can be generalized easily to arbitrary pairs x,, x,+,, 
since the probabilities 

P(x < x, < x + Ax, y _ xi,. < y + Ay) -AxAy 

for s > 1 may be obtained from the formulas below if the factor a is changed to a', 
and r to r(a' - l)/(a - 1) if a p 1 (mod m) and rs if a 1_ (mod m). This is readily 
seen from formula (2.1). 

In an ideal random sequence, all AP should be very small signifying statistical 
independence of predecessors and successors. 

The discussion of (3.1) is started with a few elementary remarks. If x, and x are 
numbers between 0 and 1 (excluding 1), the following formula holds: 

(3.2) [Xi-x]=JI if < x, <x, 
0 if x _ xi < 1. 

Therefore, 

(3.3) [x,-x]-[xi-x-vAx]= I1 if x < xi < x + Ax, 
0 otherwise. 

The left-hand side of (3.3) can be written in terms of the first Bernoulli polynomial 

(3.4) PI(x) = x - [x] - 2 

as 

(3.5) [xi -x] - [x, -x -Ax] = P1(xi -x - Ax)- P,(X, -x) + Ax. 
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Now let n be the period length of the pseudo-random numbers x, (i.e. n = m or 
n X(m)). Then the following formula for AP is a consequence of (3.5): 

AP=- J [P,(xi x - Ax) - Pj(xi -x) + Ax] n i-, 

(3.6) *[PI(Xil - y - AY)- P1(xi,I - Y) + Ay] - AXAY 

-= - ([P,(xi - x - Ax) - Px, - x)] n t 

*[P,xjj - y - Ay) - PI(xj+j - y)] + R + R2, 

where 

'RI =~Y E (P1(x, - x - AX) - Pj(xi - X)1 n i- 

(3.7) - AY[P(X xi <x+ AX)-AX], 

R= E ~j [PI(Xi+1 - y - AY) - P1(X1+1 - Y) 
n i. 

_ Ax 1P(Y z xi+I < y + AY) - Ay] 

According to the results of Section 2, the quantities P(x < x, < x + Ax) - Ax 
must be small; otherwise the pseudo-random numbers are not uniformly distributed. 
For an exact calculation of (3.7), a lemma is needed. (For the definition of ((x)), 
see (1.4).) 

LEMMA 3.1. 

i ZP( Jl = P,(x); (ii) == ((X)). 

Proof' Since the function P,(x) is perio(lic witlh period 1, one can assume 
0 ? x < I. Therefore, 

P' ( )- - - i - ) 

- }-+ x ~ x - 2-P(x), 
2 + 2 - 2 

proving part (i) of the lemma. If x $4 0 (mod 1), part (i) and (ii) of the lemma coincide. 
If x 0 (mod 1), one has 

*,,.i ( 1 ( - I ) _ 

22 

whiclh proves the lemma. 
From now on the two cases r 0 0 (mod in) and r ( (nmod in) have to be 

considered separately. 
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Case a. r p 0 (mod m). In this case, xi _. /im and xi+, ((aj + r)/m) (mod 1), 
where ,u runs from 0 to m - 1. Furthermore, the following notation will be used 

II '2 Jl J2 (3.8) x = , x + Ax = , and y =- , y + Ay =- 
m m m m 

With the help of Lemma 3.1, the residual terms R, and R2 in (3.7) are calculated 
first: 

R= J2 -2 J[P1(-2) - 
I 

2 

2 'n =0 {1(am r -( m m(} J2- 

J1 

'2 [P1(-J2)- P1(--1q 

m 

Without loss of generality, it can be assumed that IA, 12, J1, and J2 are integers. Then 
R1 and R2 vanish. 

Now, the main part of AvP, the expression (3.6), is calculated. One has 

AP = 1 N' {pI'(/-_ ) ( - - } 1( mJ) I(-77- )}' 

which becomes by the substitution p ) /1 + 12 and zi -*j + A1, 

(3.9) = I {p (-p)p (a + aj2 2 + r) _ ? Mp a a12-J + r) 

- ?I aI 1 2 + r)+ + a a + r)} 

m mA= m m m m 

Here the sums are almost generalized Dedekind sums, since the function ((x)) differs 
from Pw(x) only for integer values. As this concerns only the values ,h 0 and 

- -IA + beJoe - a'ur (mod A), where the subscripts X and v stand for 1 or 2, 
(3.9) becomes 

Pi PIa? aI - J2+ r)) )( + a )) 

(3.10) beO mes 
-n N/I a r - ) + () 

p +~~- 

A au+a T -J,+ rl 

whereag + aI, ))} + R3+ R4 

where 
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2mR3 P(a m J2 f) + P1(a12 mJl +2) 

+ P1(a 
al 

J2 + r) p(aIh 
- 

mJ + r) 

[aI2 J2+ r aI2 Jm + r 

(3.11) - [a J mJ2 r] + [am J + r 

2mR4 -pI(a-'(J2 -r) 12) + pa( - r)- 

+ p(IaKi(JI - r) - 12) P1 (a&(JI - r) I- 

[a'(J2 -r) - 12] [a(J2 -r)- I, 

- [a(JI -r) -I2 + [aJ(J -r) - Ii] 

Both expressions are of the form [a + b] + [c + d] - [a + c] -[b + d], which is 
either -1, 0, or + 1. Consequently, R3 and R4 can only attain one of the values 
- 1/2m, 0, + 1/2m. This means that R3 + R4 is bounded by 1/m. 

Consequently, the final expression for AP becomes 

(3.12) AP= 2 (-1)XIP S(m) (a, in) + R where jRjI < 

Case b, r- 0 (mnod rn)--General Conisideralionis. In this case, the pseudo-random 
numbers xi and their successors x, have the form (2.7): 

i r, a r, 
Xi + I_ - + (mod 1) 

wherQp = 0, 1, , c - 1, and the r, are residtues mod f. Again, the notation (3.8) 
will be used. Then the residual terms R, and R, in (3.7) becomne by means of Lemma 
3.1: 

PI + 1 PI + i 

(3.13) R, = CI-X(f) = e f C- cl \C cf, 

illw J E{, (VI)_pf / ) 

and similarly 

(3.14) R2 = P {Irt1 P PI( j)} 

If f is sm0lI, it can be assumed that I, 1_2 and J1 .J, (mod f). Then (3.13) and 
(3.14) vaniish. If I, 0 k, or J1 . J2 (mod f), (3.13) anid (3.14) have to be calcuilated 
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exactly. A bound for R1 + R2 is given by 

(3.15) JR, + R21 ( c ( c + of )-c 

Now the main part (3.6) of AP will be calculated. 

(3.16) cX(f) c?{fQs+ c-c / - - 

PI (alA + ar, - J,) _pI( + ar, J) + R', 

where R' = R, + R2. If 

(3.17) 11 0 r,, 12 # r,, J. # rt, J2 p r, (mod f for all r, 

the function P,(.) can always be changed into ((.)) and AP becomes again an 
alternating sum of generalized Dedekind sums. If one of the conditions (3.17) is 
not fulfilled, the change of PI(.) to ((.)) produces the following terms 

R - 

1 
I f r. -12\(( ai -_J] PI fa I2_- 3 2cX(I) { f )( '( - ) 7 cf 

+ 6 r- I, )(p(aIj - J2) ( cf - )J 

R4~=~{Th {5ar, A J - 
(1 a'JA-I R4 = c)v(1) 4^( X/ )(Pl\ cf / I cf )) 

ar, - J1, a IJi ' 2 a--J, -I, 
X+ ( I ) PI PI 

where 

(x) JI if x 0 ( (mod I) 

O if x 4 0 (mod I). 

A reasoning similar to that after (3.11) shows that R3 and R4 are bounded by 1/2cX(f). 
This gives the final answer 

(3.18) A P l E E (- )Xl' _ S X ,, A(a, c) + R + R', 

where R is boundLed by l/cX(f). If I,- I and J1 J2 (mod f), R' is 0; otherwise, 
R'= R, + R2, where R, + R2 is bounded by (3.15) and has to be calculated 
according to (3.13) and (3.14). 

The results (3.12) and (3.18) show that AP is essentially an alternating sumn of 
generalized Dedekind stims with the sanme prinlcipal arguments a, in or a, c. 

Caise c. r- 0 (mod mn) --Speecial Cases. For later discussion, the results of the 
previous subsection will now be applied to some special in. The modulli i- 2' are 
most important as they are convenient on binary computers. 

A.1. in - 2', e > 3, a 5 (mod 8), y - I (mod 4). All residues of the forn 
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4/L + 1 (,u = 0, 1, * , - 1) are generated. Therefore, c = 262,i f = 4, r I = 1 
and formally, X(f) = 1. Without loss of generality, it can be assumed that I, -I 
and ,J1 J2 (mod 4). (3.18) now becomes 

2 

(3.19) AP = 12 2+ 
( (1-l) 

,MaIX Jja, 2 
)2+ 

R, IR 1 

If I '=I2 4 1 and J1 J2 4 1 (mod 4), the residual term R is 0. If I,'=_2I Jl 

J, =_ 1 (mod 4), (3.19) can be simplified a little 

(3.19') AP = -12 (-1) X+jA (2a) (a, 26 2) + R where IRI < 1 
2e2 X ( Ol) arxj, 

This expression is of the same form as (3.12) with m = 2e2. It will be discussed 
further in Section 7. 

A.2. m = 2% e > 3, a 3 (mod 8), yO =1 or 3 (mod 8). All residues of the form 
8,u + 1, 8,u + 3 (, = 0, 1, - , 2 - 1) are generated. Therefore, c = 2-3, f = 8, 
X(f) = 2 and r, = 1 or 3. Again, it can be assumed that I, =2 and J1 J2 (mod 8). 
(3.18) now becomes 

9 
(1 > I( -)3 j(2e? R 

(A .2 2 S2e-(j-I) ,arx-J,(a, 2e) S s),-3(3-rx) ,ax-Ja,(a 2) + R 
(3.20) 

where JR ? 2e2 

B.1. n = pe 5 2e, p primie. All residues of the form lip + v (,u = 0, 1, 
pC-l 

- I v = 1, ,p- 1) are generated. Therefore, c = pe-l f = p and r, = 

The residuLal terms R, (3.13) and R2 (3.14) are calculated first by means of Lemma3.1: 

I=-- -1) 
- 

-( p ) - p )} 

= - 1 p( p ( p_ )} P 

'2e-l( 
1Z P K ) - 

- 
_ - P ) + 

p (p 1 

and hence, if I, and I2 are integers, 

(3.21) lRI i p2 I( J_ P{I( p ), I( p, 
P 

} p2 
I2 < p' 

, 

For R2 a similar value is obtained. 
To simplify the expression (3.18) for AP, a lemma is needed. 
Lemma 3.2. 

n-1 

X snf2,h(a, c) = s,?nf(a, n c). 
P Eo 

Proof. If I runs through the residue classes 0, 1, * , c - 1, and v runs through 
the residue classes 0, 1, -.--, n - 1, then ,un + v runs through all residue classes 
0, 1, -. -, nc - 1. Consequently: 
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n-1 (nf) n-1~~~~~~~~~~~~~~~~~~~~~~~~~ 
z + vf?+ g ~~(ag a(vf g)+c 

s(,f+ h(a, c) = (c- + nfc //\ nc + nc )) 

n-1 c-I An + v + gY\((a(pn + v) ag + ch 
= z + 9 

nc + 
V.-0AO 

nc n c 
cOf 

S snfk(a, nc) 

which proves the lemma. 
An application of the lemma yields for (3.18), 

p-1 p-1 

#jj s5(2ccvi ,I)I-j(a, P i) = Spe-l(v-I) aI-J(a, Pr)_ra pe-1) -sp aI-J(a, PI) 
'=1 c-0 

(3.22) - S_peI aI-j(a, pe) - s_ p-1 (a(, pe ) 

(p- ) j(a, p) - s(Pe)-1aIj(a, p ')- 

(3.21) and (3.22) give the final answer 
2 

A p = 1 ZA 
p (p -1 , 

(3.23) {s(P)k P_S(a,pe 
) 

p)sLP.2-\,GrX_J(a, pe )} + R 

where lRl < 1 + 2 
< 4. =e (pl) 

B.2. m = p, p prime. Then, f = p, c = 1 and s(p,?aij(a, 1) = s(p) (O, 1) = 

((I/p))((J/p)), according to Corollaries 1 and 2 of Section 4. Therefore, (3.23) can 
be simplified to 

(3.24) AP = 1 E (-) s0(P)rx j(a, p) + R where RI < 

The significance of the present expressions will be discussed in Sections 5, 6, and 7. 
At the moment the results are merely summarized as 

THEOREM 3.3. The joint probability distribution of pairs of pseudo-random numbers 
is expressed in the following formulae: for r 4 0 (mod m) in (3.12), for r 0 (mod m) 
and arbitrary m the expression is found in (3.18). In particular, for m = 2e and 
a-5 (mod 8) in (3.19), for m = 2e and a 3 (mod 8) in (3.20), andfor in = pe i- 2 

in (3.23) and (3.24). 

4. The Computation of Generalized Dedekind Sums. In the preceding sec- 
tion, it was shown that the determination of the exact number of pairs of pseudo- 
random numbers in a given rectangle can be reduced to the evaluation of generalized 
Dedekind sums. 

The methods of computation which are presented here utilize a number of 
theorems on these sums which were proved in 1957 (cf. Dieter [6]). The correspond- 
ing theorems for ordinary Dedekind sums s(a, c) have been known since Dedekind's 
Supplement to the Complete Works of Bernhard Riemann. They are the special 
cases g =h = 0 (mod f) in all the subsequent identities. 

Reciprocity Formula. Let (a, c) = 1. Then 
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sgn cs(/J(a, c) - sgin as(f)(c, a) = 
a 

P2 + a P2(a + ch) + a P2( 

+ ( f ) if (g, h) 0 (0, 0) (mod f) 

isgn(ac) if g e h 0 (mod f). 
Here 

P2(x) - (x - [X])2 - (x - [x]) + 1 

is the second Bernoulli-polynomial. 
COROLLARY 1. s(')(a + nc, c) = s (f) +g(a, c), n integral. 
COROLLARY 2. s(f)(0, 1) = ((g/f)X(h/f)). 
COROLLARY 3. s"'(-a, c) = -s-f..,(a, c) = -sg,',(a, c). 
The corollaries are simple consequences of the definition of the generalized 

Dedekind sums. T;he Reciprocity Formula is a deeper arithmetic law; for a proof 
see Dieter [6], Meyer [26], Rademacher [28], or a forthcoming paper of the author [10]. 

The stated identities are utilized for a computational procedure in the following 
way. Let s = s('(a, c) be the generalized Dedekind sum to be evaluated. If lal > Icl, 
change s into a sum for which lal < {cl by means of Corollary 1. Now, use the 
Reciprocity Formula for exchanging the numbers in the positions a, c and g, h. The 
new lal is no smaller than the new Icl and can therefore be reduced by an applicatior 
of Corollary 1. 

Repeated steps of this kind will decrease the numbers in the positions a and c 
until, finally, Corollary 2 becomes applicable. Often the process can be shortened 
by applicatiqns of Corollary 3. The procedure suggests an Euclidean algorithm 
for a and c: 

a = q(t - a, 

c qla, - a2 

(4.1) 

an-2 = q,,-1an-- a, 

an_,I = qa,, where a, = 4 1. 

The laj nmust foirm a decreasing sequence if the process is to terminate. Since the 
signs of the q, anid a, miiay be chlosen freely, one can in fact ensure that 

(4.2) la_ t _1 l 
- ta. l. 

This assuLmlption cauises all q, and a, to be uniquely determined. In Corollaries I 
and 3, tlle subscripts g and h are also transformed. This suggests the definitionls: 

(4.3) (g;,g h;,) =- + (q hgp-- , + h,_-9 -g-1), (g-,, h-l,) (g, hi). 

For the final expression, another integer, called d, is needed. d is the last number 
in a chain of numibers b, wlhiclh is defined as follows: 

(4.4) bn4, -s, bn = 0, 1. 1 = 

bk - f. fork = i - I, n - ,** 2 , -1 . 
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Now 

(4.5) bo= d 

is used for the final expression of the Dedekind sums. 
THEOREM 4.1. Let the quotients q, be defined by the Euclidean algorithm (4.1), (4.2), 

the subscripts g, h, by (4.3) and the integer d by (4.4), (4.5). If (g, h) 0 0 (mod f) 
one has 

(4.6) s"}(a, c) h d2 

+ ap - _ I qtP, )- S 

If g- h - (mod f), the ordinary Dedekind sums are obtained and the expression 
(4.6) changes to 

a +d I 1 (4.7) s ̀ )(a, c) = s(a, c) 12q, + - L sgn(a-,la,) 

where sgn (x) = x/llxl if x < 0 and 0 otherwise. 
Theorem 4.1 will be proved by induction. A different proof may be found in 

Rademacher [27] for the ordinary Dedekind sums and in Dieter [6] for the generalized 
Dedekind sums. 

Proof of Theorem 4.1. The following identity will be considered first: 

(cgn s`)(a, c) sgn (am)s'>, .h,(a.,, am) - P, + c4) 

a.\ d eiga + (Ih / 
(4.8) P ., ) + - P( - ) 4 -t P., 

2a,,,2c \ J / 2c \ 

- E {((! ))((Lfr)) - sgn(a,a, ) (;) (Q) + ( ) 

The function 

(4.9) 5(x) j if (x 0 (mod I), 

l0 if x 0 (mod I), 

enables one to obtain (4.6) and (4.7) simultaneously from the special case m = n in 
(4.8). Thie next two consequences of (4.1), (4.3), (4.6) and Corollary 2 show this: 

sgn (an)sUfn.h (an-I, a.) = sgn (a,,)s,f - (qna., a,,) 

= sgn (J.,)sX2),0,, ,, 0, a,,) 

sh, (0, 1) f f 

and 

2) P2( I ) 
It 

) 
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(4.8) will now be proved by induction. The case m = 0 is easily verified. The 
induction step from in to m + 1 uses Corollaries 1 and 3 and the reciprocity formula 
as follows: 

sgn (a.)s, Am -am,l, a) = sgni (a.)sgm,, ,,J(qmam - am+,, am) 

=-sgn (am)sU2, .OmO-. X . l.i(-am+ l, am) = -sgn 
(am)st?g 

,(am 
, 

, am) 

( sgn (am, )sj,M h(a,,,, a,,) + - sgn(arnam, ) a( ) 6(+) - 

am 2g) _ I amg. + am,,hm ami- I h 

2a II 2am,am,,41 I 2am 1 
The last term is transformed using (4.1) and (4.3): 

(4.11) --2-, ,- P.Q,f) = - P2Q h) + a P2( gm ) 

After a substitution of (4.10} and (4.1 1) into (4.8), it merely remains to show that 

brnpag c 1 (amgm +am I hmi' bm+i ~ ag + cha1 
2am 2( t fam / 2am+ I / 

This identity follows from the relations 

(4.1 2) ambm,t - amtIbm = I, 

(4.13) ang,n + am. ihm = ag + ch. 

Formula (4.12) will be proved by descvnding induction. It holds for m = n since 
=a2 1. The induction step from in + I to m is carried ouit by means of an identity 

which follows from (4.1) and (4.4). Namely, 

a,,,b,,, am ,b, (Clan. + b. n - aI . i(q. Ib, - bm+2) 

= a,,,,b, 2 - a,, t 2bm t I 

Formula (4.13) will be proved by ascending induction. It holds for m = 1, 
since a g I + ah-1, = ag + chi. Thle induction step from in - 1 to m is carried out 
by means of an identity whlich follows fromn (4.1) and (4.3). 

a,,,g,, + al, hl,l a,(q,,,,g,,, + hI--,t) + (q,/a. - 

a,,, - ?, q, -- a, ht {1d7--I1 - 

This completes the proof of formula (4.8) and therefore of (4.6) and (4.7). 

5. Numerical Considerations. Further information on the joint distribution 
of pairs (x,, xi+,) can be extracted from Section 4 in which the precise calculation of 
generalized Dedekind sums was outlined. This will throw some light on cases in 
which the Euclidean algorithm for a and in or a and in/fi haLs some large quotients. 

The discussion will be based on generators 

(5.1) Y., -= ay, (Imiod 2'), where a 5 (mod 8), 
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since they are most important on binary computers. The unit-square is divided 
into 2' X 2" subsquares of equial area 22a. Hence, the following quantity has tQ 
be calculated 

A N(X, ts) = 2-P- < x, < -+ 1 ) - I < 2 a a~~~~~2 

which becomes, by use of (3, 19), 

=S(21-,4x(a2 - S a(2~ )~, ,2 (5.2) AN(X, ,u) - 2 (a 
-2 (2 

- , (a 2 

S(2 ') 2 S20 2 
-S2as aX--A 1(as 2 ) + S2a.2.a(XII)_psl(a, 2 ). 

The calculation of s`)(a, c) in Section 4 starts with the Euclidean algorithm for a 
and c: 

(5.3) a = qc - a,, c qlal - a2, * s an-2 = q,,1a_1 - a,,, a., - 
qa,,.a 

Then, the integers (g,, h,) are constructed: 

(5.4) (g_js, h1) = (g, h), (gps hv) = (qpgy-1 + hp-,* -g-1). 

To obtain a simple expression for g,, h,, the so-called vth convergent to the fraction 
a/c is defined as follows: 

S(j qr, SI 1. 
to 1 t1 q, t-, -q - lq) 

and, generally, 

(5.5) s- qs sV, (= qt, I tv * 

That (5.5) defines tlhe vth convergent to ai/c follows from 

(q - Cl q IV_sj, S) - Sv q- S4 -) SV 1 _ S v I 

\ qv 2(,t1 - tv 2) - I liv ,t, tv-i tvx (r - 1- - tI I 

(5.5) yields the following expression for (g,, /I,): 

(5.6) (g, hj) -- (s,g + tvh, -s, ,- tp-,h), 

whiclh cain also be proved by induCtionl: 

(gVt), hvf,) -(g ' + hj, -gfj -- ((q. Is, ,--i)g + (q,,tit, -t h, -i, ) 

( s),I 19 + t,. ih, -s1g9 - th). 

With these deliinitions, formula (4.6) can nzow be applied to (5.2). Hlovever, the 

folloxking termls in (4.6), 

apa fugr tm wit alter a ting as C qL ly, t cneehotr 

appdear fotlr tinies witli alterniatitig signs. Consequently, they callicel c.tcli otliler. 
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The last sum En=o ((g,/f))((h./f)) is bounded by I(n + 1) and will be denoted by R. 
Therefore, one obtains 

A N(X, P) -- Z qP2i + 
2 42 

_-P2(^1+ z1_1(aX - , - 1)) 

(5 .7) 

{Sv + t,_ l (aX + a -,) 

+ P2?v-i + tV_1(aX + a - 
u 

+ R 

(5.8) - q , q^Sv_ + R where IRI < ni + 1. 

Formula (5.7) results in a global bound for AN(X, ,u): 
THEOREM 5.1. If the generator is defined by yi+1 ayi (mod 2e), a 5 (mod 8), 

the deviation AN(X, A) is globally bounded by 

I n 

(5.9) ! 

IANI ?- 

E 

/qi 

I + 

? 

+ 
. 

(5.9) - ~~~~~~4 i-O 
Proof. The second Bernoulli polynomial is bounded by -1 < P (x) < '. Hence, 

the curly bracket in (5. 7) is bounded by 2, which proves Theorem 5.1. 
It should be noted that similar theorems are true for generators yi+l = ayi + r 

(mod m) with r :z? 0 or r = 0. 

To obtain stronger results, the term in the curly brackets in (5.7) has to be 
calculated exactly. For this, two lemmas are needed. 

LEMMA 5.2. P2(x + Ax) - P2(x) = 2AxP1(x) + (AX) - 2 AxR, where 

R = 0 if n < x, x + Ax < n + 1 for some integer n, 

0 < R < 1 if n - I < x < n < x + fx < n + I for some integer n, 

-1 ? R < 0 if n - 1 < x + Ax < n < x < n + 1 for some integer n. 

LEMMA 5.3. P1(x + Ax) - P1(x) = Ax - R, where 

R = 0 if n _ x, x + Ax < n + 1 for some integer n, 

R = 1 if n - I ? x < n < x + Ax < n + 1 for some integer n, 

R = -1 if n - 1 < x + Ax < n < x < n + 1 for some integer n. 

Proof of Lemma 5.2. As the function P2(x) is periodic with period 1, one can 
assume 0 ? x < 1. Hence, 

P2(X + AX) - P2(X) = (X + AX - [X + AX])2 - (X + Ax - [x + Ax]) - X2 + x 

= 2 Ax(x - 1) + (AX)2 - [x + Ax][2(x + Ax) - [x + AX]- 1J 
= 2 AXP1(X) + (AX)2 - R'. 
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If [x + Ax] = 0, then R' = 0. If [x + Ax] = 1, then R' = 2(x + Ax) - 2 < 2 Ax. 
If [x + Ax] =-1, then R' = -2(x + Ax) = -2Ax - 2x < 2 AxjI since x > 0 and 
Ax ? 0 in this case. This proves Lemma 5.2. 

Lemma 5.3 is obvious and will not be proved here. 
The term in the curly brackets in (5.7) will be denoted by S,-1 and Is, + 

(l/2a)t,(aX- ,) by A,. Two applications of Lemma 5.2 and one of Lemma 5.3 
result in 

(5.10) S= P(A,) - P2(A, {P 2(A + at,- P2(A, + art, - t 

t, at,~ ~ ~ ~~t, at 
(5.1 1) 2 ta {P, A, a P (A, + --)_Rl + R (v) 

(5.12) = -2 t-.at- + 2 tI R (-) R (') + R '(} where JR[") I < 1. 
2a 2a 2a 

It can be assumed that t, and at, are reduced mod 2a. Let the residue x for which 

(5.13) =-x (mod 2a), IxI < 2a-, 

be denoted by x. Then (5.12) yields, for AN(X, ,), 

(5.14) AN(X, ) = _ q,Ev (t (Ry' - R 00 
+ R(P)) - t,a) + R' 

where IR'I ? ni + 1 and the R"') are bounded by 1. 
To clarify the further discussion of (5.14), some additional notations are 

convenient. 
DEFINITION 5.4. Ana index v for which q, is large is called essential; all other indices 

are inessential. A subsquare Q(X, ,A) = [X2-, (X + 1)2-') X [,2-", (, + 1)2-a) is 
called regular, if there are integers n, such that 

at, t at, 
(5.15) n, _ A, - ca, AV, A, + 2a - 2a, A, + 2a < n, + 1 

is true for all essential P, where A, = 4s5 + (1 '2")t,(aX - A). Otherwise, it is ctlled 
irregular. 

In terms of these definitions, a theorem is formulated which is an elaboration of 
the expression (5.14). 

THEOREM 5.5. If the subsquare Q(X, ,u) is regular, then 

(5.16) AN(X, u) qt at,12 + R' where IR'I ? ,1 + 1. 
=i 2" 2" 

(5.16) is small in most cases and often zero. If Q(X, ,u) is irregular, then each essential 
index v, for which (5.15) is not fulfilled, contribuites to AN( X, IA) the amount 

(5.17) -q, 2 Val2 R ") where IR1')I ? 1. 

R(') is positive for pairs X, A, if ti,1 > 0, at,1 > 0, or i,- < 0, at,-1 < O and if 
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there is an integer n, such that 

2 a 2 a 

(5.18) 

' 

~(n, + 's,-1) - < )1- aX < (II, + 's_l1) + &. 

R"' is negative for pairs Xf ,u, if i,vl > 0, at,.-, < 0, or < 0, at,-, > O atnd if 
there is an integer n, such that 

2 a 2a 
(5.19) 1 (n, + 's,-1) + a 1 < A-X < (n, + Is,-1). 

I w , , ,-I 

Proof of Theoremn 5.5. If a subsqgare Q(X, 1s) is regular, all R"' are zero. Hence 
(5.14) results in (5.16). 

If a subsquare Q(X, ,u) is irregular, some of the R('" are not zero. For the subsequent 
discussion, it will be assumed that i_, > 0 and at,_- > 0. The discussion in the 
remaining three cases is similar and left to the reader. 

According to (5.15), ope of the following inequalities must hold for some 
integer n,: 

(5.2O) T41 + 2 (aX- ) - < -n < + (a X lA- ) 
4 2 ~ 24 ,~ 

1t- tv-- 1tv -t, 
(5.21) S- + --- (aX A) < -tn, < s- + (a, -A + 

4 a- 4 2cf2 

P1 t"- i a at+- - .1 

(p.22) 2" 

<_,, _ S4 + ?VIa.A-H t,t 
4 2a 2 

If (5.20) is true, then 0 < R"') ! 1, R'-j =- 0, R('- - 1. The term R('-' appears 
during the transition fromn (5.10) to (5.11). The terim R('"-" appears during the tran- 
sition from (5.11) to (5.12). HIence, the contribution to AN(X, ,u) is 

t2a! (Rj 2a R' i) = q, ' R', where 0 < R' ? I. 

If (5.21) is true, then R('- - R= 0, R('-' = +1. There appear no terms 
R"-" and R"v-1' during the transition from (5.10) to (5.11), but there does appear 
the term R-"' - +1 during the transition from (5.11) to (5.12). Hence, the con- 
tribution to AN(X, ) is 

-q4 a'K') -, -----tR1'" whereR( ) = 1. 

If (5.22) is true, then R"'11 -0, a < R11) < 1, R"-') - 0. Only the term R(''" 
appears during the transition from (5.10) to (5.11). Hence, the contribution to 
AN(X, ii) is 

-?i 2'' ) -q, -R R'' where 0 ?RPcF' < 1. 
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R2''" is 0 if the right-hand side of inequality (5.22) is an integer and obtained by 
-n,. Consequently, the _ sign in (5.22) can be changed to a < sign. 

It has to be shown, that the conditions (5.20) to (5.22) are equivalent to (5.18). 
A multiplication by 2'/f, changes (5.20) to (5.22) into 

(5.20') 2\n. +-S-, l < aX - _ ",( + 4I) 

2" c' 2 c S- 
(5.21') - ('+ < A+ aX < n + + C 

(5.22') n(, + )+ - < aX < - + + a. 
4-1 4 ~~~~~~~t,__1 \ 4 

As the contribution to AN(X, p) is similar in the three cases (5.20) to (5.22), (5.20') 
to (5.22') can be taken together into (5.17). This completes the proof of Theorem 5.5. 

Theorem 5,5 needs some further discussion. 
If the number of subsquares 22a is large compared with the quotients q,, all the 

regular subsqtuares will have a value zero for AN. Hence, only the irregular sub- 
squares are of interest. If a > 0, (5.17) shows that the irregular subsquares for q, 
are situated at 

(5.23) --- (n, + 4-n <, X " + ^)+ A. 44 

If X = 0, I attains the values 

IA3 [t--- (t - 4-)] + y, where x 0, 1, la , 1 - , y- 0, 1, ,Id. 

This means: Eachi row contains (a + 1)io,- irregular subsquares corresponding to q,. 
Thley are cut in i,1 subsets of subsquares; eaclh subset consists of a + I neighbouring 
irregular subsquares. Furtlhermnore, the whole set of (X, ,u)-values subject to (5.23) is 
contained in i,-, sloping strips. The slope of these parallel strips is - l/d. Duie to 
this slope, each strip is cut into 1,1 pieces. The lal strips contained in (5.23) for fixed x 
will be called one strip for obvious reasons. 

The situation is best explained with the help of a sketch wlich shows the strips 
of irregular subsquares of Example I of the next section. Tlhere, only q, and q, are 
significant. Furthermore, one lhas a -3, so = 0, io 1, s_ 1, i- 3 (mlod 2a) for 
small a ! k (k is given). Hence, (5.19) is applicable and 

(5.24) 2 4 <,+ 3A < 

2a 1) 
(5.25) 2(n + 4 < 

I 
+ 3X < 1) -t. 3 ~ ~~~~~~~~3 4 

The strip whiclh corresponds to (5.24) is denoted by 1. The strip whiclh corresponds 
to (5.25) consists of tlhree substrips; they are denoted by 21, 22, 23. The slope of all 
strips is .-3 

The situation is not so similple if nmore thian two of the quotients q, are signlificanlit. 
In sLuch a situation, some of the strips can overlap and partially cancel eachl other. 
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The examples to follow will throw some further light on the situation. 

21 22 23 1 
21 

22 

23 

21 

22 

23 

21 

22 

23 

6, Numerical Results. The formulas in Section 3 can easily be translated into 
comlputer programs, whiipl allows rapid calculations of the value of AN for a given 
rectangle. Computations of this kind have been carried out with the help of J. Ahrens, 
lHalifax, and A. Grube, Karlsruhe. The generators were of the type yi,, ay, 
(mod 2e) with a _ 5 (m)od 8). The unit-square was divided inlto 2a X 2a subsquares 

of equal size, Typical resuilts for AN = ')-AP are given in the next table>. 

TABLE 1. )Y+1 - 16381 yr (mod 226); valuhes of AN = 226AP 

.,~~~~~~~~~~_ 
I X1 E (o'8) 1(2 8'8) (8e 8'8) 8 (888) 8 88 8 8 

(I, *) 171 171 228 170 171 -284 -341 -286 

(x98) 170 171 -284 -341 -286 171 171 228 

(1,2) -341 -286 171 171 228 I10) 171 -284t 
3 
#8 171 228 170 171 _284 _ s!4l 1 -286 171 

( 4 S ) 1 7 1 - 284 - 341 _-286 1 7 1 I 721 2 28 170 

(8 83 1-276 171 1 1228 170 171 284 -341 

(-a) 228 170 171 -284 -341 -2h6 171 171 

( -71) -284 341 -286 171 171 228 170 171 
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TABLE 2. Y1+i = 41475557 y, (mod 228); valhes of AN 226AP. 

X '*1 ( 6) (? 7),( 2 
(2 4) (4,5) 56,1 

. 

(O,8) -2 1 l 0 -1 0 -1 2 

(.L,a) 1 0 1 0 -l 2 -2 1 1 

(8 8) 1 -1 2 -2 1 1 0 -1 0 

(J.8) lI 1 1 0 0 -1 2 -2 

(A") -1 0 -1 2 -2 1 1 0 

6@,) 2 -2 1 1 0 -1 0 -1 
6 

91) { 1 0 -1 0 -1 2 -2 1 

I( ,i) 0 -1 2 -2 1 1 0 -1 

The tables show the following facts: 
(i) The rows (columns) are cyclic permutations of the first one. A shift of trree 

to the left changes a row into the next one. 
(ii) The deviations AN are surprisingly small. The second generator is superior 

to the first one. 
Fact (i) follows immediately from (5.2). This shows that only the first row has to 

be calculated. 
It is no surprise that the second generator is better than the first one. Thle quotients 

of the continued fraction for 41475557 and 226 = 67108864 are given by 1, 3, 3, 3, 3, 
3, 3, 3, 2, -2, 21, 4, -4, -5, -3, 3, whereas the quotients of the continued fraction 
of 16181 and 226 are 0, -4097, -4, 455, 5, 2. 

The next three examples treat some generators more systematically. The first 
two are generators which cannot be recommended. The third one, suiggested by 
0. Taussky, generates pseudo-random numbers which are nearly independent on 
the unit-square. 

Example 1. The generator is of the type a : 

(6, I ) .t1 = )2k t 2 C = 2k k 
(61I) ,~2k, c22k a=2k ~3. 

The EUclidean algorithnm for a and c starts with 

2k - 3 0= O X 22k - (-2 + 3), 22k = (9 - 3)( 2k + 3) (-9), 

-2A + 3 q q( 9) + e, | < 4. 

Hence, 

qo = 0, q1 _ _ 2k _ 3, q2 (2 _ 3), q3 _ 1, 2, or 4, 

and 

so 0, to 1; sI 1, t 2k + 3 

The only essenltial indices are v I and v - 2. Formula (5.18) of Theorenm 5.5 yields: 
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If Q(X, A) is irregular, then 

(6.2) AN ~-2k a if n X 2 -4 < A + 3X < n X 2a, 0 < n < 4, 

(6.3) AN 12 a if 41(n + 1)2a -4 < ji + 3X < 41(n + -)2a, 0 < n < 12. 

(6.2) is a sloping strip of width 3. (6.3) consists of three strips of width 4. 
Actual calculations according to Section 3 were compared with the approximate 

values (6.2), (6.3). The case k = 13 was tested by dividing the unit-square into 
29 X 2' subsquares. Hence, the values of (6.2) and (6.3) became 

AN -16 if 512n - 4 < g + 3X < 512n, n = 1, 2, 3, 

A N 
1 6 

5, 66 if 
8 

n + 
1 

- 4 < 1+ 3 < 
2 

n + 128. 
3 3 3 3 3' 

The actual values for AN are, for X = 0, 

-16, -16, -16 if , = 509, 510, 51 1, 

1, 6, 5, 4 if,u = 39, 40, 41, 42, 

3, 6, 5, 2 if ji = 210, 211, 212, 213, 

6, 5, 5 if j = 381, 382, 383. 

Note how accurate these values are. 
Although the values of AN indicate reasonable uniformity of the distribution of 

pairs, the generator cannot be recommended: The strip (6.2) is deficient for general 
k and a, by 3 X 2k-a X 2a = 3 X 2k pairs. These missing pairs are contained in the 
other three strips of (6.3). In the example k = 13, this is a dislocation of 24576 out 
of 67,108,864 pairs, constituting a small but systematic deficiency of the generator. 

Example 2. The generator is of the type a -\ : 
2k+2 2k k 31 (6.4) m =22 2 a= 2k+1 3 

The Euclidean algorithm for a and c is 

2k 1 - 
I = 0 X 22k - (2k+1 + 3), 

2k (-2k - 1 ) X (-2 + 3) - (2 - 3), 

-2k, 1 + 3 _ (-4) X (2 
k 

- 3) 9, 

2k - 3= q3 X 9 - E, E ? 4. 

Hence 

-= 2k1 - q2 4, q3 (2 - 3), ? q, = 1, 2 or 4, 

and 

SO = 0, to = 1; s = 1, t, = 2k-1 + I; s2 = 4, t2 = 2k+I - 3 

As q2 may be neglected, formula (5.18) of Theorem 5.5 shows: 
If Q(X, AX) is regular, then 

AN 12a [3(2 - 1) - 3(2k1 - 3)] - 0; 
22 
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if Q(X, u) is irregular, then 

(6.5) AN -22k--a if n2 - 4 < 3X + IA < n2a, 0 < n < 4, 

( N 62 k-l-a if nX 2' -4 < 3X + A < n X 2", 0 < n < 12, 
(6.6) 3 ~~3 3 

n 3 0 (mod 3). 

(6.5) is again one sloping strip of width 3 and (6.6) consists of two strips of width 3. 
Again, actual calculations according to Section 3 were carried out for comparison: 

k = 13 and 29 X 29 subsquares lead to values for (6.5) and (6.6) of -5.66 and 2.66, 
respectively. The actual values were -5, -5, -6 for (6.5) and 3, 3, 2 and 2, 2, 3, 1 
for (6.6). The strip (6.5) had a deficiency of 3 X 2 X 2k-1- X 2a = 2k pairs. The 
generator is better than the previous one but it is not really recommended because 
it still suffers from systematic deficiencies of the distribution of pairs. 

Example 3. This generator, suggested by 0. Taussky [30], is widely used: 

m- 2 35 a = 515 _ 4 747 774 349 (mod 233). 

The Etuclidean algorithm (4.1) for 4 747 774 349 and 233 yields the quotients: 

qi = 1, 2, -4, 4, -8, 5, -23, -5, 4, 13, 3, 6, 2, -4, -2, 3. 

The bound (5.9) of Theorem 5.1 for AN is equal to 38-. The actual values of AN 
are given in Table 3. The unit-square was divided into 210 X 210 subsquares of equal 
area. The maximal values of AN are -8 and +7. Only the values for AN(O, ,u), 
0 < AL < 1023 are given; the other values AN(X, AL) for X 5 0 are cyclic permutations 
of these values. 

7. Final Conclusions. The question has been raised whether any particular 
value of r in the mixed congruential generator yj, -= ay. + r (mod m) offers special 
advantages. From the behaviour of pairs (xi, xi+A), a negative answer seems to be 
indicated. 

Obviously, the probability P(I < yi < I2, J1 -< yi+l < J.) is equal to 
P(1 < Yi < I2, J1 < ayi + r < J2). If r is changed into r + r', one has 

(7.1) PU1 < Yi < I2, J1 _ ayi + r + r' < J9) 

= P(I1 < yi < I2, J, - r' < ayi + r < J2 - r). 

Hence, a shift r -* r + r' simply moves the rectangle [I,, I2) X [J1, J2) to 
[Ii, I2) X [Ji - r', J2- r'). The same can be deduced from formula (3.12) 

i 2 

(7.2) 'A >, E (- ) So,aI>_) (a, m)- 

Changing r into r + r' merely moves J, to J, - r' and J2 to J2- r'. 
For the total square [0, 1) X [0, 1), the consequences are as follows: If this square 

is split into n2 equal subsquares of length l/n, the integers IA and J, are of the form 
vml12, where v = 0, 1, *n - 1. Thus, as long as r' is a multiple of m/n, the change 
r -* r + r' effects the same cyclic permutation on all subsquares of each strip parallel 
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to the J--asis. In otlher words, it m-lerely permnuites the "rows" [0, 1) X [J1, J2) of sub- 
squares cyclically. 

TABLE 3 
Values of AN(O, 4, 0 O ps < 1024, for the generator yj+1 515y1 (mod 2") 

l4- l?fO1*t I&LFo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

s l0 -2 +3 -4 +4 -3 +2 Tt +i +1 -3 +4 -4 +3 -3 +2 +1 -4 +4 ", +5 
20 S5 +3 0 1 t2 A. +5 -4 +2 0 0 +1 -3 +5 -5 +3 -2 +2 +- '-3 
40 +3 -5 + 5-5 +2 0 -I +2 -4 +5 -3 +1 0 0 +2 -4 +5 -5 +4 -3 
60 +2+1 -3 +4 T5 +6 -5 +2 +1 -2 +2 _4 +4 -3 +1 +1 -1 +2 -3 +4 
8Q .5 +5 -4 t2 +2 .4 +4 -4 +4 -4 +2 +2 _2 +2 _3 +3 .3 +2 -. I1 

100 +3 4 +4 -4 +4 -4 +2 +3 -5 +4 .3 +3 -4 +3 +i _2 +3 -4 +4 .3 
120 +2.2 0 +3 -5 +4 -4 +4 -5 +2 +3 -4 +3 -3 +3 -3 +2 * _12 +3 
i4o -4 +4 -2 +1 .2 +1 +4 -0 +4 -3 +3 -5 +3 +1 -4 +4 .4 +3 -2 +1 
160 +1 .2 +4 -5 +4 -2 +1 -2 +2 +3 -6 +6 -4 +3 -3 +2 +1 -4 +5 -6 
180 +3 -1 0 +1 -1 +3 -5 +5 -3 +1 -1 +1 +3 _6 +6 -4 +3 -2 0 +2 
200 -3 +5-6 +3 0 -1 0 -1 +4 _6 +5 3 +2 -2 +1 +3 _6 +6 -4 +3 
220 -2 0 +2 -2 +4 -6 +5 -1 -1 +1 -2 +4 -7 +5 -3 +1 - i 0 +3 -5 
240 +5 -4 +3 -2 o +1 -3 +4 -5 +4 -1 -1 +2 -2 +4 -6 +4 -3 +2 -2 
260 0 +3 -6 +5 -3 +2 -2 0 +4 .4 +4 -4 +3 -1 0 0 -1 +4 -6 +5 
280 -3 +3 -3 0 +3 -5 +4 -4 +2 -.1 -1 +4 -4 +4 -4 +3 1 0 0 1 
300 +5 -7 +5 2 +2 "2 0 +4 -5 +4 -3 + I-1 0 +2 -4 +5 - 5+3 1 
320 0 o- t+6 -8 +5 7 +1 "2 +1 +3 .5 +5 -4 +2 O -1 +2 -4 +5 
340 -6 +3 0 -2 0 0 +5 -8 +6 -2 +1 -1 -1 +4 -Ss+5- 4 +2 +1 -2 
360 +2 -3 46 -7 +3 0 --1 0 +4 -8 +6 -2 +1 -1 -1 +4 -5 +5 -4 
380 +2 +2 -3 +2 g +5 -7 +5-1 -1 0 -1 +4 -7 +5-3 0 +1 -2 +4 
4po -4 +4 -4 +3 +1 3+3 -3 +5 -6 +4 -1 -1 +2 -2 +4 -S +4 -3 tl 
4go 0 -2 +4 -5 +4 -3 +2 +1 -3 +3 -3 +5 -5 +3 -1 0 +1 _2 +4 -4 
440 +3 -3 +2 +1 -3 +4 -5 +4 -4 +2 +1 -3 +3 -3 +5 .5 +3 -1 +1 0 
460 -2 +5 5 +3 -2 +1 +1 -3 +5 - 5+4 -3 +1 0 -2 +2 -3 +5 -6 +3 
480 0 0 0 2 +5 -5 +3 -1 0 +1 -2 +4 -5 +5 -4 +2 +1 _3 +2 -3 
500 +5 -6 +3 0 -1 0 -2 +5 -5 +4 -2 0 +2 -3 +4 -5 +6 -5 +2 +1 
520 -2 +2 3 +5 -5 +3 0 -1 -2 +4 -5 +4 -2 0 +3 -4 +4 -4 +5 
540 -5 +2 +2 -3 +2 -2 +4 -5 +4 -1 -1 +2 -3 +4 -4 +3 -3 0 +4 75 
560 +4 -3 +4 -5 +3 +1 -3 +3 -3 +4 -4 +3 -1 -1 +3 -4 +5 -3 +2 ?3 
580 +1 +3 -6 +4 -3 +3 -4 +2 +1 -3 +4 -4 +4 -3 +2 -1 -1 +4 -5 +5 
600 _.3 +2 -3 +2 +1 -6 +4 -3 +3 -4 +2 0 -2 +3 -4 +4 -.2 +1 -1 0 
620 +3.-5 +6 -4 +2 -2 +1 +2 -5 +6 -4 +3 -2 +1 0 -1 +2 _4 +4 -3 
640 +1 0 -1 +3 -5 +6 -4 +2 -1 0 +2 -4 +5 -4 +4 -3 +1 +1 -1 +2 
660 -4 +4 -3 +1 0 -2 +3 -4 +5 -4 +3 -2 0 +2 -3 +4 -4 +4 -3 + 1 
680 +1 -1 +2 -5 +6 -3 +1 0 -2 +4 r6 +5 -4 +3 -3 0 +3 r4 +4 _3 
700 +3 -3 +1 +2 -3 +3 -4 +5 .3 +2! -1 -1 +5 -7 +5 -3 +2 -3 0 +3 
720 _"5 +4 -2 +2 -3 +2 +1 -3 +4 -5 +5 -2 +1 -1 -1 +6 -8 +6 -2 +1 
740 -2 +1 +2 -5 +5 -4 +2 -2 +1 +1-3 +5 -6 +5 -2 +1 -1 -1 +6 -8 
760 +5 -1 +1 -2 +1 +2 _.3 +4 -4 +2 -1 0 0 -3 +6 -.7 +5 -1 0 -1 
780 0 +4 -7 +6 -2 +1 -1 0 +2 -3 +4 -4 +3 0 -1 0 -2 +5 -8 +6 
800 -2 -1 0 -1 +4 -7 +6 -2 +1 0 -1 +2 -2 +3 -4 +4 -1 i 1 -2 
820 +5 -7 +5 -2 -1 +1 -2 +3 -6 +5 -2 +1 0 -1 +2 -2 +3 -5 +5 -1 
840 -1 +1 -2 +6 -8 +6 -2 n 0 -2 +3 _5 +4 -3 +2 -1 -1 +3 -4 +4 
860 -4 +4 -1 -1 +2 -3 +6 -7 +5 -9 +1 0 -2 +4 -5 +4 -2 +1 -1 -1 
880 +3 -5 +4 -3 +3 -1 0 +1 -3 +7 -8 +5 -1 0 0 -2 +5 -6 +4 -1 
900 +1 -1 0 +2 -5 +5 -5 +3 -1 0 +1 -3 +7 -8 +4 0 0 0 -2 +5 
920 -5 +3 -1 +1 0 -1 +2 -4 +6 -6 +3 O -2 +1 -3 +5 -7 +14 +1 T1 
940 0 -1 +4 .5 +4 -2 +1 +1 -2 +2 -4 +6 -6 +4 +1 .3 +1 -2 +4 -7 
960 +5 -1 -1 +1 -2 +4 -4 +3 -2 +1 +2 -3 +2 -3 +5 -6 +5 0 -3 +3 
980 -3 +4 -5 44 -1 -1 +2 -3 +3 -4 +3 -3 +2 +2 -3 +2 -3 +6 -7 +5 

1000 0 -2 +2 -3 +4 -4 +3 -1 0 +2 -3 +3 -3 +2 -4 +3 +1 .3 +3 _4 
1020 +6 -6 +4 0 

Th)is leaves the quicstion whetler the ilmixed congruential generators y,+1 - 
ay, + r (milod in) Iave any advantage over the pLurcly multiplicative generator 
Y, aj, (iqiod mn). Undouibtedly, the nmixedl generators provide a larger periocl fo 
the samie modtulus. 
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In the following comparison, purely multiplicative and mixed generators with 
the same period 2'-2 and the same factor a are taken: 

(7.3) yi+ I ay, + r (mod 2-2), a 5 (mod 8), r 1 (mod 2), 
(7.4) yj+j ay, (mod 2') , a 5 (mod 8), yo 1 (mod 2). 
For both generators the probability that 

(7.5) (x,, xi,) -2 , 
2)ei [2' 2 2 2) [X [2 i ) 

will be calculated. For the generator (7.3), one has 

p -L < - < 12 L 2 (0 < 2'a2) 
2h--is 2e- 2 2< -2 2 -2 

-2 
) 2 2 

This expression was determined in (3.12) as 

(7.7) e X 2 (-e-2 +) (a, 2 2 2 A, 

For the generator (7.4), one can use that y, is of the form 4jA' + I where 
0 <,' < 22. Hence, the subsquare in (7.5) may be changed according to 

r~~~~~~~~~~~~~~~~l 41! 9 1 41 +! 1) 4 
J4, ++ 

1 4-- J2 
r 

I 

[2?- 2,---2J j%) [e 2! 2) [ e 2 ) [2e 
I 

2 

This yields, for the probability of (7.5), 

( ' 
, 

J, qY 
s9 9 < < < 

4/1 + I 41.,+1I 4J, +_-I <Yv, 4iJ., I 
(7.8) P)-- <^ 

< 21 < 

t41, + < 4A t- 1< 41~ + I 4J, + < 4a<u + 4 J, I ---~~~~~~~~~~~~~~~~~~~~~- . -- --- - _- <eX o e2 2 < e ~ = 2 

F ,1-alJ, 
a 

J2- 
a 

(7.9) -PKk < <2 ~ 4'< a_ < 4-__ 

(7.8) was calculated in (3.19); for the application of (3.19), Ix and J, have to be 
substituted by 4IA + I and 4J, + I and a factor 4 has to be cancelled in the subscripts. 
This yields 

I.L- 1 J.) -J, I I 
(7.10) 7Z-2 X oe 

- + =2 E (-l )x fi jSO,als ) J t (a - ) /4(a, 2 2). 

If one compares (7.6) and (7.9) or the equivalent expressions (7.7) and (7.10), 
one realizes immediately: 

The multiplicative conigruentiil genieralor (7.4) is equivalentt to the mixed CO)I- 

gruentiil genierator (7.3) with r = (a- 1)/4. As the mixed congrienitial genierators 
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are equivalent for different increments r, they are all equivalent to the purely multiplica- 
tive congruential generator (7.4). 

It should be mentioned that a similar argument is true for triplets, quadruplets, 
and any number of pseudo-random numbers. Hence, the above material indicates: 

A special choice of the increment r has no advantage with respect to the joint 
probability distribution of two, three, four, or more successive pseudo-random nwnbers. 
If the modulus is of the form m = 2', r = 0 seems to be as good a choice as any. For 
random-number transformations, it has the advantage that a precise 0 is never generated. 

This shows that the properties of the linear congruential generator are merely 
determined by the factor a. The results of this paper suggest the following rule for 
the choice of the factor: 

The factor a should be chosen in such a way that the Euclidean algorithm for a and 
c = m/f (in the multiplicative case) or a and m (in the mixed congruential case) has 
small quotients. In particular, for the generator yi+1 - ayi (mod 2e), a = 5 (mod 8), 
the quotients of the Euclidean algorithm for a and 2e-2 should be small. 

A measure for the quality of the generator is the global bound 
n 

(7.11) 1 Lqil + n + 1 ? IANI 
4 s-O 

for the deviation AN of pairs xi, x,+1 in any subsquare of the unit-square. It was 
derived in Theorem 5.1. 

It should be noted that such a choice of the factor a results also in a small value 
for the serial correlation P, between xi and xi,+. The explicit expressions for Pi can 
be found in Dieter/Ahrens [8]. They are again sums of generalized Dedekind sums. 
For example, for the generator y,+, _ay, (mod 2e), a 5 (mod 8), one has 

48 (4 
22) 

I 

4 X 2e 48 (4) 2 
(7.12) = --s,(a, 2e') 

16 2 e 

In a subsequent paper, it will be shown that the frequency of permutations of 
triplets can also be expressed as sums of generalized Dedekind sums. For example, 
for the generator yi,, + ay, (mod 2e), a = 5 (mod 8), one has the following expressions 
where a-' stands for an integer for which aa-' = (mod 2') 

P(xi 1 < xi < x1+1) - 6 
1~~~~~ 
_ 4 

\s(a, 2-2) -s(4)(a2, 22-2) + s4 O(a2 - a, 2 2) 

+ si(a2 - a1, 262) + 4si4)(a, 2) + RI, 

P(x. < Xf+1 < Xi-1) - 

2e= {-s2 (a - 1, 2e) + sj,0(a2 - l, 2 ) 

+ s10(a - a), 2e2) + s14'(a-1 - a, 2#)- 4sV)(l + a , 2e64)} + R2, 
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P(xi < xi-i < Xi+1) - 1 

1~~~~~ 

= {-514 (a - 1, 2c ) + s (a 1, 2e) 

+ S (4( -I a-2 2e-2) + s(4)(a- a-, 2e-2) - 4s14)(l + a, 2 e4)} + R3, 

where 

4 8 6 32 6 32 
R= - - R2 = _ 2 R3 2 e 

if a =_ 5 (mod 16), 

4 8 6 32 6 32 
2e 3 X 22e R=-- - R3 -3- 3 X 2e 

if a_ 13 (mod 16). 

The residual terms R1, R2, R3 are extremely small for any choice of the factor a. 
The exact values of P(xi-, < xi < xi+,), P(xi < xi+, < xi-,), P(xi < xi-, < xi+,) 
can be calculated using the results of Section 4. For most 'reasonable' factors a, 
these values are rather small. For example, for the generator 

yj,l - 41475557 yi (mod 228) 

only 3, 2, or 1 triplets are dislocated. More details will be given in the forthcoming 
paper [9]. 

Often, bounds for P(x-11 < xi < x i+ ) - are sufficient. For this purpose, the 
function D(a, c) defined in (1.6) may be used. If the factor a is chosen in such a way 
that 

D (a, 2'e-2), D(a - 1, 2e-2) D(a + 1, 2e-4), D(a-1 - 1, 2e2), D(a1 + 1, 2 4), 

D(a, 2 e4), D(a2, 2e-2), D(a2 - 1, 2e-2) D(a-2 _ 1, 2-2), 

D(a 2 - a, 2-2), D(a-2 - a-, 2e-2). D(a - a-1, 26 2) 

are generally bounded by K, then 

2 2(P(xi_1 < xi < xi-.) -6 

2 2(P(xi xi+l < xi_l) -), 

2 (P(Xi < xil < xil+) - 6) 

are bounded by 8K + 3. This means: At most 8K + 2 triplets are dislocated with 
respect to their order. 

This shows again the high quality of some linear congruential generators. 
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Halifax, Canada. His discussions, his computer programs, and his knowledge of 
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